Соли химических веществ

Соли химических веществ

 
Солью называются сложные вещества, образующиеся в результате замещения одного или нескольких атомов водорода в кислоте на металл (или группу NHJ) и диссоциирующие в водных растворах на положительно заряженные ионы металла (или NH4+) и отрицательно заряженные ионы — кислотные остатки. Различают соли средние, кислые, основные, двойные, смешанные и комплексные.
 
 
Как уже было сказано, кислоты бывают одно-, двух-, трех- и более основные (основность кислоты определяется числом атомов водорода, способных замещаться на металл). Если в кислоте все атомы водорода заместить на металл, то полученную соль называют средней солью, например, натрий сернистокислый Na2SO3, калий сернокислый K2SO4.
 
Кислые соли получаются при неполном замещении атомов водорода в кислоте. Кислые соли образуют только двух- и более основные кислоты. В названии соли, образованной при замещении одного водорода в двухосновной кислоте, добавляется слово «кислый», например, натрий кислый сернистокислый NaHSO3, калий кислый сернокислый KHSO4. Соли, образующиеся при частичном замещении водорода металлом у трехосновных кислот, принято обозначать как одно-, двух- и трехзамещенные.
Так, соль ортофосфорной кислоты Н3РО4, образованная замещением одного атома водорода на натрий, называется натрий фосфорнокислый однозамещенный NaH2PO4, при замещении двух атомов водорода — натрий фосфорнокислый двузамещенный Na2HPO4, а трех атомов водорода — натрий фосфорнокислый трехзамещенный (или средний) Na3PO4.
 
Основные соли — это такие соли, в молекуле которых металл соединен не только с кислотным остатком, но и с гидроксилом.
Например, висмуту азотнокислому среднему соответствует формула Bi(NO3)3, состав же висмута азотнокислого основного выражается формулой Bi(OH)2NO3. Обычно основные соли содержат при металле одну или две гидроксильные группы: Mg(OH)Cl, Fe(OH)2Cl, Al(OH)S04 и др. Основные соли образуются при взаимодействии кислот со слабыми основаниями, причем кислоты должно быть меньше, чем требуется для получения средней соли.
 
Двойные соли — это такие соли, в которых кислотный остаток одной и той же кислоты соединен с атомами двух металлов или атомом металла и аммонийной группой, например, калий-натрий углекислый KNaCO3, соль Мора (NH4)2Fe(SO4)2*6H2O и др.
 
Двойные соли существуют только в твердом кристаллическом виде; при растворении они распадаются на составляющие их простые соли. Это доказывается, например, тем, что в водном растворе алюмокалиевых квасцов можно обнаружить ионы К+, Аl3+
 
Смешанные соли — это соли, молекулы которых состоят из одного металла, соединенного с двумя разными кислотными остатками. Подобно двойным солям они могут быть получены при кристаллизации насыщенного раствора двух солей одного металла, но с различными кислотными остатками, например:
 
СаСl2 + Са(NO3)2 = 2СаСlNO3
 
Комплексные соли отличаются от двойных солей тем, что в водном растворе они не диссоциируют на ионы солей, из которых они образовались, а дают особые комплексные ионы.
Например, калий железистосинеродистый K3[Fe(CN)6] образует ионы К+ , а барий платиносинеродистый Ba[Pt(CN)4] соответственно Ва2+; ион железа в первом случае и ион платины в другом обнаружить в водном растворе не удается.
 
Группа солей — самая многочисленная в ассортименте неорганических реактивов, и число их превышает 1000 наименований. С учетом химических свойств, местонахождения солеобразующих элементов в периодической системе элементов Д. И. Менделеева и по некоторым другим признакам неорганические соли подразделяют на девять подгрупп.
 
1. Соли щелочных металлов (лития, натрия, калия, рубидия, цезия), аммония и таллия.
Соли щелочных металлов — белые твердые кристаллические вещества за исключением бромистого и иодистого таллия (желтого цвета) и солей, имеющих окрашенные анионы. Большинство солей хорошо растворимо в воде; мало растворимы — калий и аммоний хлорнокислые, калий и натрий кремнефтористые, натрий тетраборнокислый, натрий кислый пиро-сурьмянокислый; очень мало растворимы — углекислый, фосфорнокислый и фтористый литий; нерастворимы — хлористый, бромистый и иодистый таллий.
 
Применение. Соли натрия, калия и аммония реактивной чистоты широко применяют как технологическое сырье в химической, медицинской, металлургической и других отраслях промышленности, а также в аналитической химии в качестве исходных веществ для титриметрического анализа и для приготовления буферных растворов. Некоторые соли калия и натрия используют в качестве окислителей, плавней, комплексообразователей и т. п.; соли аммония — для колориметрических определений и как без-зольные реактивы в гравиметрическом анализе; калий кислый сурьмянокислый — для открытия и определения натрия.
 
Соли цезия и рубидия применяют в электротехнике и приборостроении при изготовлении аккумуляторных батарей, фотоэлементов и люминесцентных материалов; соли таллия — в производстве монокристаллов, лития — в синтезе лекарственных средств. В аналитической химии соли цезия, рубидия и таллия применяются для микрокристаллоскопических реакций на ряд катионов и анионов, а сернокислый литий — для разделения кальция и магния.
 
2. Соли щелочноземельных металлов (кальция, стронция, бария» магния) и бериллия.
Соли щелочноземельных металлов представляют собой белые твердые кристаллические вещества, за исключением солей, имеющих окрашенные анионы. В отличие от солей щелочных металлов многие соли этой подгруппы очень мало или практически нерастворимы в воде, например, все углекислые и фосфорнокислые соли (кроме бериллия), сернокислые и фтористые соли кальция, стронция и магния. Соли магния имеют горький вкус, а соли бериллия—сладкий. Галогениды кальция и магния гигроскопичны и расплываются на воздухе.
 
Применение. Соли щелочноземельных металлов реактивной чистоты применяют в следующих отраслях промышленности: соли бария и стронция — в радиоэлектронике и авиационной промышленности; соли магния, бария, кальция — в производстве лекарственных препаратов; соли бериллия — при изготовлении газокалильных сеток; кальций хлористый кристаллический — в металлургии и т. д В лабораторной практике широко применяется безводный хлористый кальций для осушки газов, обезвоживания эфиров и других органических жидкостей; для сушки и обезвоживания служит также безводный хлорнокислый магний — ангидрон. В качестве аналитических препаратов используются сернокислый магний — для осаждения свинца, углекислый кальций — для определения марганца, хлористый барий — для определения сульфатов и т. д.
 
3. Соли кадмия, меди, ртути, свинца и цинка.
Соли цинка — белые вещества, растворимые соли ртути и свинца бесцветны. Углекислые, фосфорнокислые и сернистые соли цинка, кадмия и меди в воде нерастворимы. Большинство солей ртути и свинца также нерастворимо в воде; хорошо растворимы их азотнокислые соли и хлорная ртуть (сулема).
 
Применение. Соли кадмия, меди, ртути, цинка реактивной чистоты довольно широко применяют в промышленности и технике, например, цинк хлористый и сернокислый — в медицинской промышленности, радиоэлектронике, металлургии и в специальных отраслях техники; кадмий сернокислый — в химической промышленности, а кадмий хлористый — в сельском хозяйстве; медь сернокислая — в химической промышленности и радиоэлектронике; ртуть хлористая (каломель) и хлорная — в медицине.
 
Из данной подгруппы солей в аналитических целях используются кадмий азотнокислый и сернокислый — для определения сероводорода в воде; цинк азотнокислый — при нефелометрическом определении серы в крови; цинк хлористый — для обнаружения вторичных спиртов; ртуть(1) азотнокислая—в качестве осади-теля в гравиметрическом анализе, а ртуть(П) азотнокислая — как составная часть реактива на белок; медь сернокислая кристаллическая — как катализатор при определении азота по Кьельдалю, а безводная — в качестве осушителя.
 
Йодная ртуть служит основой для приготовления так называемых «тяжелых жидкостей», используемых в минералогическом анализе для разделения зерен минералов по их плотностям.К ним относятся жидкость Рорбаха — раствор BaHgl4 — желтая жидкость плотностью 3,40—3,50 г/см3 и жидкость Туле — раствор K2Hgl4, содержащий иодистый калий,— светло-желтая жидкость плотностью 3,19—3,20 г/см3, смешивающаяся с водой без разложения.
 
4. Соли алюминия, ванадия, железа, кобальта, марганца, никеля, титана и хрома.
Соли алюминия—это кристаллические или аморфные вещества, окрашенные только при окрашенных анионах. Соли двухвалентного железа имеют окраску зеленую или голубоватую, кобальта — темно-розовую и красную, хрома — темно-фиолетовую или темно-зеленую, никеля — зеленую. Многие соли хорошо растворимы в воде, углекислые и фосфорнокислые соли — нерастворимы, а фтористые — мало или вовсе нерастворимы.
 
Применение. Соли алюминия, ванадия, железа, кобальта, никеля и хрома применяют в качестве катализаторов или они служат исходным сырьем для их приготовления. Соли высших валентностей, а именно марганцовокислый калий и двухромовокислый калий или натрий используют как сильные окислители, а соли титана, никеля и двухвалентного железа — в качестве восстановителей.
 
Аналитическое значение имеют соли двухвалентного железа — в качестве восстановителей нитро- и нитрозосоединений; соли трехвалентного железа — как индикаторы на роданиды, соли кобальта — при осаждении калия в виде кобальтинитрита и для приготовления невыцветающих цветных стандартов; соли никеля для иодометрического определения олова; соли титана — в анализе азосоединений; соли хрома — для периметрического определения железа и как фиксатор в микроскопии.
 
5. Соли лантаноидов, иттрия и скандия.
Лантаноидами называются 14 элементов, занимающих порядковые номера 58—71 в периодической системе Д. И. Менделеева. Вместе с иттрием и скандием они составляют так называемую подгруппу редкоземельных элементов. В природе они мало распространены и обычно встречаются в смеси друг с другом. Различают цериевую и иттриевую группы редких земель. Первая включает пять элементов: лантан, церий, празеодим, неодим и самарий; вторая — одиннадцать: гадолиний, гольмий, диспрозий, европий, иттербий, иттрий, лютеций, скандий, тербий, тулий и эрбий.
 
Соли самария имеют светло-желтую окраску, гольмия — желтую, неодима — сиреневую, тулия—зеленоватую, празеодима — зеленую. Соли остальных редкоземельных металлов представляют собой бесцветные кристаллы или белые кристаллические порошки. Азотнокислые, сернокислые, хлористые, бромистые и йодистые соли хорошо растворимы в воде; углекислые и фтористые соли в воде нерастворимы. Все перечисленные соли, кроме фтористых, кристаллизуются из растворов в виде кристаллогидратов. Йодистые и большинство хлористых и бромистых солей очень гигроскопичны и расплываются на воздухе.
 
Применение. Соли редкоземельных металлов применяются в технике пока ограниченно, так как они сравнительно мало изучены. В аналитической химии применяют лантан азотнокислый — в качестве реактива на ацетаты в капельном анализе и для гравиметрического определения фтора; иттрий азотнокислый — для тит-риметрического определения фтора; церий сернокислый — в периметрии для оксидиметрического определения двухвалентного железа, трехвалентной сурьмы и многих других.
 
6. Соли галлия, гафния, индия, ниобия и тантала.
Соли шестой подгруппы преимущественно бесцветные кристаллы или белые порошки. Многие из них очень гигроскопичны и расплываются на воздухе. Окислы этих металлов обладают амфотерными свойствами, поэтому большинство их солей легко подвергается гидролизу, переходя в основные соли, мало или вовсе нерастворимые в воде; известны также соли, где эти металлы входят в состав анионов (например, ниобаты и танталаты).
 
 
Применение. Соли галлия и гафния используются в качестве катализаторов в органическом синтезе. Хлористый галлий, растворимый в органических растворителях, как катализатор имеет существенное преимущество перед хлористым алюминием. Ниобаты и танталаты калия, натрия и других металлов применяют для изготовления пьезоэлектрических преобразователей, керамических сегнетоконденсаторов и усилителей сигналов изображений в телевизорах. Тантал-калий фтористый используется для производства чистых препаратов тантала, не содержащих ниобия.
 
7. Соли висмута, германия, кремния, мышьяка, олова, селена, сурьмы и теллура.
Кислородные соединения висмута, сурьмы, мышьяка, германия и олова обладают амфотерными свойствами.
 
Соли сильных минеральных кислот этих металлов растворимы в воде, но при значительном разбавлении или нагревании гидролизуются и выделяют нерастворимые осадки основных солей. Окислы высших валентностей этих элементов образуют кислоты: мышьяковистую, мышьяковую, орто-, мета- и пиросурьмяные, оловянную и др. Некоторые из этих кислот в свободном состоянии не получены, но соли их хорошо известны.
 
Кремний — аналог углерода, но неметаллические свойства его выражены слабее, чем у углерода. С хлором он образует четыреххлористый кремний — жидкость, разлагающуюся водой на кремневую и соляную кислоты, а со фтором — четырехфтористый кремний — газ, образующий с водой кремнефтористоводородную кислоту. Соли кремневой кислоты носят название силикатов, а кремнефтористоводородной кислоты — фторосиликатов. Большинство этих солей растворимо в воде.
 
Селен и теллур по свойствам близки к сере. Подобно сере они образуют селениды и теллуриды, аналогичные сульфидам, а также соли селенистой H2SeO3 и селеновой H2Se04, теллуристой Н2ТеO3 и теллуровой Н2ТеO4 кислот, подобные солям сернистой и серной кислот.
 
Применение. Многие соли этой подгруппы находят применение в технике и научных исследованиях. Соли мышьяковистой кислоты используют как энергичные восстановители, а калий мышьяковистокислый — в медицине; соли висмута — в медицине и как катализаторы в органическом синтезе; соли германия — при изготовлении светящихся экранов и в специальной оптике; четыреххлористый кремний — для синтеза кремнийорганических соединений и др.
 
В аналитической химии применяют четыреххлористое олово для отделения рубидия и цезия от калия хлорстаннатным методом и для омыления простых эфиров фенолов; соли висмута — для микрокристаллоскопического определения калия, натрия и других металлов; калий теллуристокислый — в качестве диагностического средства в медицине; натрий кремнефтористоводородный — для осаждения и отделения скандия.
 
8. Соли вольфрама, молибдена, тория, урана и циркония.
Вольфрам и молибден в соединениях могут проявить различную электрохимическую валентность — от 2 до 6. Наиболее устойчивы соединения, где металл шестивалентен, как, например, вольфрамовая . H2WO4 и молибденовая Н2МоO4 кислоты. С металлами эти кислоты образуют соли — вольфраматы и молибдаты, которые представляют собой твердые кристаллические, преимущественно белые вещества. Вольфраматы и молибдаты щелочных металлов растворимы в воде, остальные соли — нерастворимы. Известны также соли сложных кислот; фосфорновольфрамовой, фосфорномолибденовой, кремневольфрамовой, кремнемолибденовой и др. Соли этих кислот, окрашенные в различные цвета, хорошо растворимы в воде.
Вольфрам и молибден образуют также соли, в которых они проявляют основные свойства и выступают в качестве катионов: вольфрам шестихлористый WCl6 (сине-фиолетовый кристаллический порошок), молибден пятихлористый MoCl5 (черный с зеленоватым оттенком кристаллический порошок) и т. п.
 
Окислы тория и циркония с минеральными кислотами дают хорошо кристаллизующиеся белые соли, большинство которых растворимо в воде. Цирконий проявляет амфотерные свойства, образуя цирконилы, например, цирконил азотнокислыйZrO(NO3)2 и соли циркониевой кислоты H2ZrO3 — цирконаты.
 
Применение. Соединения вольфрама и молибдена применяют в металлургии для производства специальных сталей. Кроме того, молибдаты используют в качестве катализаторов; некоторые соли вольфрама и циркония — для изготовления художествейных красок; хлористый цирконий — как катализатор полимеризации этилена и пропилена; азотнокислый торий — для изготовления газокалильных сеток.
 
В аналитических целях используют аммоний молибденовокислый для открытия и количественного определения фосфорной кислоты; торий азотнокислый — для гравиметрического, титриметри-ческого и колориметрического определения фторидов; уранил азотнокислый — для титриметрического определения мышьяка, гравиметрического определения ванадия и как микрохимический реактив на уксусную кислоту и перекись водорода; цирконий азотнокислый — для осаждения и отделения малых количеств фосфатов.
 
9. Соли драгоценных металлов.
К подгруппе солей драгоценных металлов относятся соли серебра, золота и металлов так называемой платиновой группы: рутения, родия, палладия, осмия, иридия и платины. Перечисленные металлы относятся к малоактивным элементам, которые весьма устойчивы к химическим воздействиям. Серебро растворяется только в азотной кислоте, другие — в царской водке (смесь азотной и соляной кислот), а на иридий, например, не действует и царская водка.
 
Соли серебра — твердые кристаллические вещества. Серебро азотнокислое и фтористое растворимы в воде, сернокислая соль — мало растворима, а остальные соли — нерастворимы. Растворимые соли серебра представляют собой бесцветные кристаллы или белые порошки.
 
Из солей металлов платиновой группы наиболее распространены палладий азотнокислый—коричневато-бурые кристаллы, палладий хлористый — темно-бурый порошок, иридий четыреххлористый— черно-коричневый порошок. Все указанные соли, за исключением хлористого палладия, чрезвычайно гигроскопичны и расплываются на воздухе.
 
Применение. Из солей драгоценных металлов наибольшее значение имеет азотнокислое серебро, применяемое в медицине, фотокинопромышленности, производстве зеркал и для гальванических покрытий. Соли остальных элементов, кроме гальванопластики, служат непосредственно или в качестве исходного сырья для приготовления различных катализаторов.
 
В аналитических целях используют азотнокислое серебро для титриметрического определения галогенидов, цианидов и роданидов, для осаждения мышьяка, тиосемикарбазидов и пуриновых оснований; сернокислое серебро — для осаждения хлоридов; палладий хлористый — в капельном анализе как реактив на иодисто-водородную кислоту.
 

Поиск по сайту